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Problem I
Latent Space Energy-Based Model (LEBM). The LEBM can be defined with
probability density as

pα(z) =
1

Z(α)
exp [fα(z)]p0(z)

Limitation. Such a prior model is expressive in modeling the intra-layer relations
among latent units. However, it mainly focuses on a single-layer latent space,
which can make it challenging to capture data representations at different levels.

Visualization for LEBM by changing each unit of 2-dimensional z. Left: changing
the first unit. Right: changing the second unit. Top: the value of each unit, where
the orange color indicates the first unit and the blue color indicates the second unit.

Problem II
Conditional Hierarchical Generator Model. The conditional hierarchical gen-
erator models consist of multi-layer latent variables that are organized in a top-
down hierarchical structure and modelled to be conditionally dependent on its up-
per layer, i.e.,

pθ(z) =
L−1∏
i=1

pθi(zi|zi+1)p0(zL)

where pθi(zi|zi+1) ∼ N (µθi(zi+1), σθi(zi+1)) and p0(zL) ∼ N (0, I).
Limitation. Such multi-layer latent variables are typically parameterized to be
Gaussian, which primarily focuses on modelling the inter-layer relation for latent
variables while the intra-layer relation is largely ignored. This can be less informa-
tive in capturing complex abstractions, resulting in limited success in hierarchical
representation learning.

Hierarchical sampling on BIVA via the repamaramization trick, i.e., zi =
µθi(zi+1) + σθi(zi+1) · ϵi. Left: sampling ϵ1, ϵ2 for bottom layers. Middle:
sampling ϵ3, ϵ4 for middle layers. Right: sampling ϵ5, ϵ6 for top layers.

Proposed Method
Joint Latent Space EBM Prior Model. We propose a joint latent space EBM
prior for multi-layer latent variables, which can capture hierarchical representa-
tions by jointly modelling the latent variables of all layers and is also expressive in
modelling the intra-layer relation among latent units at each layer.

pα(z) =
1

Z(α)
exp[fα([z1, . . . , zL])]p0([z1, . . . , zL])

where latent variables are partitioned into multiple groups and concatenated, i.e.,
z = [z1, z2, . . . , zL].
Architectural Hierarchical Generation Model. The generation model is formu-
lated as

pβ(x|[z1, z2, . . . , zL]) ∼ N (gβ([z1, z2, . . . , zL]), σ
2ID)

To facilitate the hierarchical representation learning with multi-layer latent
variables, we consider multi-layer hierarchical generator network gβ (=
{g1, g2, . . . , gL}) that is designed to explain the observation x by integrating data
representation from the above layers, i.e.,

hL = gL(zL), hi = gi([zi, hi+1]), i = 1, 2, . . . , L− 1

x ∼ N (h1, σ
2ID)

in which zL is at the top layer, and gi is a shallow network that decodes latent code
zi while integrating features from the upper layer.

Illustration
Comparison to Gaussian Prior and LEBM.

The illustration of the proposed joint EBM prior model (Left). Red lines indicates
the modelling of intra-layer relation, and blue lines indicate inter-layer relation.
Our joint EBM prior model is capable of modelling the intra-layer and inter-layer
relation of latent variables from all layers, which thus benefits effective hierarchical
representation learning.

Experiment: Hierarchical Representation Learning

Visualization for our model by changing each unit of 2-dimensional z. Left: changing
the first unit. Right: changing the second unit. Top: the value of each unit, where the
orange color indicates the first unit and the blue color indicates the second unit.

Hierarchical sampling on MNIST. Left: The latent code at bottom layer
(z1) indicates the stroke width. Center: the latent code at second layer (z2)
encodes geometric changes among similar digits. Right: the latent code at
top layer (z3) learns the digit identity and general structure.

Hierarchical sampling on SVHN.
Left: The latent code at bottom layer (z1)
represents the background light and shad-
ing. Center-left: the latent code at sec-
ond bottom layer (z2) represents the color
schemes. Center-right: the latent code
at second top layer (z3) encodes the shape
variations of the same digit. Right: the
latent code at top layer (z4) captures the
digit identity and the general structure.

Experiment: Image Modelling

SVHN CelebA-64
Model MSE (↓) FID (↓) MSE (↓) FID (↓)
ABP - 49.71 - 51.50
LVAE 0.014 39.26 0.028 53.40
BIVA 0.010 31.65 0.010 33.58
SRI 0.011 35.23 0.011 36.84
VLAE 0.016 43.95 0.010 44.05

2s-VAE 0.019 42.81 0.021 44.40
RAE 0.014 40.02 0.018 40.95
NCP-VAE 0.020 33.23 0.021 42.07
Multi-NCP 0.004 26.19 0.009 35.38
LEBM 0.008 29.44 0.013 37.87

Ours 0.008 24.16 0.004 32.15

Testing reconstruction by MSE, and generation evaluation by FID on SVHN and
CelebA-64.

Experiment: Analysis of Latent Space

Visualization of the latent codes sampled from our EBM prior (Top row: z2).
Blue, Orange color indicate prior and posterior, respectively.

Transition of Markov chains initialized from p0(z) towards pα(z) for 2500 steps.
Top: Trajectory in the CelebA-64 data space for every 100 steps. Bottom: En-
ergy profile over time.


