

Problem I

Latent Space Energy-Based Model (LEBM). The LEBM can be defined with probability density as

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbb{Z}(\alpha)} \exp \left[f_{\alpha}(\mathbf{z})\right] p_0(\mathbf{z})$$

Limitation. Such a prior model is expressive in modeling the *intra-layer* relations among latent units. However, it mainly focuses on a single-layer latent space, which can make it challenging to capture data representations at different levels.

Visualization for LEBM by changing each unit of 2-dimensional z. Left: changing the first unit. **Right**: changing the second unit. **Top**: the value of each unit, where the orange color indicates the first unit and the blue color indicates the second unit.

Problem II

Conditional Hierarchical Generator Model. The conditional hierarchical generator models consist of multi-layer latent variables that are organized in a topdown hierarchical structure and modelled to be conditionally dependent on its upper layer, i.e.,

$$p_{\theta}(\mathbf{z}) = \prod_{i=1}^{L-1} p_{\theta_i}(\mathbf{z}_i | \mathbf{z}_{i+1}) p_0(\mathbf{z}_L)$$

where $p_{\theta_i}(\mathbf{z}_i | \mathbf{z}_{i+1}) \sim \mathcal{N}(\mu_{\theta_i}(\mathbf{z}_{i+1}), \sigma_{\theta_i}(\mathbf{z}_{i+1}))$ and $p_0(\mathbf{z}_L) \sim \mathcal{N}(0, I)$.

Limitation. Such multi-layer latent variables are typically parameterized to be Gaussian, which primarily focuses on modelling the *inter-layer* relation for latent variables while the *intra-layer* relation is largely ignored. This can be less informative in capturing complex abstractions, resulting in limited success in hierarchical representation learning.

Hierarchical sampling on BIVA via the repamaramization trick, i.e., $z_i =$ $\mu_{\theta_i}(\mathbf{z}_{i+1}) + \sigma_{\theta_i}(\mathbf{z}_{i+1}) \cdot \epsilon_i$. Left: sampling ϵ_1, ϵ_2 for bottom layers. Middle: sampling ϵ_3 , ϵ_4 for middle layers. **Right:** sampling ϵ_5 , ϵ_6 for top layers.

Learning Hierarchical Features with Joint Latent Space Energy-Based Prior

¹Stevens Institute of Technology ²University of California, Los Angeles

Proposed Method

Joint Latent Space EBM Prior Model. We propose a joint latent space EBM prior for multi-layer latent variables, which can capture hierarchical representations by jointly modelling the latent variables of all layers and is also expressive in modelling the *intra-layer* relation among latent units at each layer.

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbb{Z}(\alpha)} \exp[f_{\alpha}([\mathbf{z}_1, \dots, \mathbf{z}_L])] p_0([\mathbf{z}_1, \dots, \mathbf{z}_L])$$

where latent variables are partitioned into multiple groups and concatenated, i.e., $\mathbf{z} = |\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_L|.$

the first unit. Right: changing the second unit. Top: the value of each unit, where the (z_1) indicates the stroke width. Center: the latent code at second layer (z_2) Architectural Hierarchical Generation Model. The generation model is formuorange color indicates the first unit and the blue color indicates the second unit. lated as

 $p_{\beta}(\mathbf{x}|[\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_L]) \sim \mathcal{N}(g_{\beta}([\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_L]), \sigma^2 I_D)$

To facilitate the hierarchical representation learning with multi-layer latent variables, we consider multi-layer hierarchical generator network g_β (= $\{g_1, g_2, \ldots, g_L\}$) that is designed to explain the observation x by integrating data representation from the above layers, i.e.,

$$h_L = g_L(\mathbf{z}_L), \quad h_i = g_i([\mathbf{z}_i, h_{i+1}]), \quad i = 1, 2, \dots, L-1$$

 $\mathbf{x} \sim \mathcal{N}(h_1, \sigma^2 I_D)$

in which z_L is at the top layer, and g_i is a shallow network that decodes latent code z_i while integrating features from the upper layer.

Illustration

Comparison to Gaussian Prior and LEBM.

The illustration of the proposed joint EBM prior model (Left). Red lines indicates the modelling of *intra-layer* relation, and **blue lines** indicate *inter-layer* relation. Transition of Markov chains initialized from $p_0(z)$ towards $p_{\alpha}(z)$ for 2500 steps. Our joint EBM prior model is capable of modelling the *intra-layer* and *inter-layer* Top: Trajectory in the CelebA-64 data space for every 100 steps. Bottom: Enrelation of latent variables from all layers, which thus benefits effective hierarchical Testing reconstruction by MSE, and generation evaluation by FID on SVHN and ergy profile over time. representation learning. CelebA-64.

Jiali Cui¹ Ying Nian Wu² Tian Han¹

Experiment: Hierarchical Representation Learning

Hierarchical sampling on SVHN.

Left: The latent code at bottom layer (z_1) represents the background light and shad- 7777777777 ing. Center-left: the latent code at sec-schemes. Center-right: the latent code 7/7/7 at second top layer (z_3) encodes the shape 7777 variations of the same digit. **Right:** the 7777 latent code at top layer (z_4) captures the 707 digit identity and the general structure.

	SVHN		CelebA-64	
Model	$MSE (\downarrow)$	FID (\downarrow)	$MSE(\downarrow)$	FID (\downarrow)
ABP	_	49.71	_	51.50
LVAE	0.014	39.26	0.028	53.40
BIVA	0.010	31.65	0.010	33.58
SRI	0.011	35.23	0.011	36.84
VLAE	0.016	43.95	0.010	44.05
2s-VAE	0.019	42.81	0.021	44.40
RAE	0.014	40.02	0.018	40.95
NCP-VAE	0.020	33.23	0.021	42.07
Multi-NCP	0.004	26.19	0.009	35.38
LEBM	0.008	29.44	0.013	37.87
Ours	0.008	24.16	0.004	32.15

Experiment: Image Modelling

encodes geometric changes among similar digits. **Right:** the latent code at top layer (z_3) learns the digit identity and general structure.

- 74 75 75 71 7L 74	7 7 787 17 77 717 7	125 45200/11 35 40
1757.76747.70	777777777	181222212021 36 12 79
1757471757676	787 707 71 71 71 71 7E 71	13158 3542 2458978 8031 31
7.7.7.7.7.7.7.7.7.	7 76 7 7 76 7 76 7 76 7	2 21 1 571 2 ROD 425053061
1717.767.7676	7 7 7 7 70 76171 76 7. 7	2 1 1226 91511 17: 10.10
1717171757670	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	736 744 59 86 0 820 6725
71 74 75 76 74 74	71778777777777777	25.00 6777 2030 10 305
17.7.7.7.7.7.7.7.	767.767176717676	2777 6 10 2 536 261 30
07071717171707	TI TO TE 70 70 TE 7. 17 TO	10 1458 715 5 8 808723
717,7.7.767	7 76 7 7 7 7 7 7 7 7 7 75	019150310 125 52 191

Experiment: Analysis of Latent Space

Visualization of the latent codes sampled from our EBM prior (Top row: z_2). Blue, Orange color indicate prior and posterior, respectively.

