

Problem

Multi-layer Generator Model: For the multi-layer generator model, the prior model is hierarchical and can be specified as

$$p_{\beta>0}(\mathbf{z}) = \prod_{i=1}^{L-1} p_{\beta_i}(\mathbf{z}_i | \mathbf{z}_{i+1}) p(\mathbf{z}_L)$$

Limitation: Such a prior model focused on *inter-layer* modeling while ignoring the *intra-layer* contextual modeling as the latent units are *conditional independent* within each layer.

Methodology

Joint Latent Space EBM Prior Model: We propose the joint EBM prior for multi-layer generator models, which can effectively capture the *intra-layer* relations at each layer and jointly correct the latent variables from all layers.

$$p_{\alpha,\beta>0}(\mathbf{z}) = \frac{1}{Z_{\alpha,\beta>0}} \exp\left[\sum_{i=1}^{L} f_{\alpha_i}(\mathbf{z}_i)\right] \prod_{i=1}^{L-1} p_{\beta_i}(\mathbf{z}_i | \mathbf{z}_{i+1})$$

Comparison with Gaussian Prior Model:

Black solid lines with arrow: inter-layer relations modelling. Red solid lines: intra-layer contextual relations modelling. Blue dashed lines: joint modelling upon all layers.

Toy MNIST with only '0' and '1' digits available.

Langevin transition on latent codes (bottom: z_1 , top: z_2). Blue, Orange color indicate prior and posterior, respectively. We use 2-dimensional latent codes and show the transition of Langevin dynamics on each layer, where the Gaussian prior can be successfully tilted via EBM to match the multi-modal posterior.

Learning Joint Latent Space EBM Prior Model for Multi-layer Generator

Jiali Cui¹ Ying Nian Wu² Tian Han¹ ¹Stevens Institute of Technology ²University of California, Los Angeles

 $+1)p(\mathbf{z}_L)$

Experiment: Image Synthesis

Image synthesis on CelebA-HQ-256

$$LLR_{\rm EBM}^{>k} = L_{\rm EBM}^{>0} - L_$$

$$L_{\text{EBM}}^{>k} = \mathbb{E}_{\mathbf{z}_{>k} \sim q_{\omega}(\mathbf{z}|\mathbf{x}), \mathbf{z}_{\leq k} \sim p_{\beta_{>0}, \alpha}(\mathbf{z})} [\log p_{\beta_0}(\mathbf{x})]$$

Hierarchical Sampling:

Hierarchical sampling for Gaussian prior model (bottom) and EBM prior model (top). From left panel to right panel, latent vectors are sampled from the bottom layers to the top layers.

Image synthesis on LSUN-Church-64

Langevin transition on CIFAR-10

Experiment: Analysis of Latent Space

Long-run langevin transition: 500

Trajectory in data space and energy profile. **Top:** Langevin transition with 100 steps. **Bottom:** Langevin transition with 2500 steps. Anomaly Detection: MNIST with one digit of data being held out as anomaly for training, and both normal (e.g., other nine digits) and anomalous data are used for testing.

4
0.034
0.028
0.023
0.010
0.004

AUPRC scores for unsupervised anomaly detection where we use un-normalized log-posterior $L_{\text{EBM}}^{>0}$ as our decision function

	THE REAL PROPERTY AND		
1	N	A	

CIFAR-10	IS	FID
NVAE*	5.30	37.73
Ours	8.99	11.34
NCP-VAE	_	24.08
VAEBM	8.43	12.19
Other EBMs		
IGEBM	6.78	38.2
ImprovedCD	7.85	25.1
Divergence Triangle	-	30.10
Adv-EBM	9.10	13.21
Other Likelihood Models		
GLOW	3.92	48.9
PixelCNN	4.60	65.93
GANs+Score-based Models		
BigGAN	9.22	14.73
StyleGANv2 w/o ADA	8.99	9.9
NCSN	8.87	25.32
DDPM	9.46	3.17

