Preliminary 1: Energy-based Model

Energy-based Model (EBM). The EBM can be defined with prob-
ability density as
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Maximum Likelihood Estimation (MLE). With observed exam-
ples {x(¥) i = 1,2,...,n}, learning of EBM can be done via MLE
with the gradient computed as
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Limitation. The MLE learning requires sampling from the EBM,
which can be achieved by Markov Chain Monte Carlo (MCMC)
sampling, such as the Langevin dynamics,
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However, such Langevin dynamics typically start from noise points,
which may take a long time to converge and mix between different
modes.

Preliminary 11: Generator Model

Generator Model. The generator model seeks to explain the obser-
vation signal x by a latent vector z and can be specified as

pe(X,2) = p(2)pe(x|2)

where p(z) is the known prior distribution such as unit Gaussian,
and py(x|z) is the generation model.
Maximum Likelihood Estimation (MLE). The MLE learning of
the generator model computes log-likelithood over the observed ex-
amples. The gradient 1s computed as
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Limitation. The MLE learning requires sampling from the genera-
tor posterior, which can be done by MCMC sampling as,
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However, noise-initialized Langevin dynamics can be ineftective in
traversing the latent space and hard to mix.
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Inference Model. The generator model can be utilized as the ini-
tializer model for the MCMC sampling of EBM, while for the

MCMC sampling of the generator posterior, an interence model 1s
thus introduced,

4o (2|x) = N (pg(x), Vo (x))

which aims to mnitialize the MCMC generator posterior sampling.
Joint Density. With the EBM, generator and inference model, joint
densities can be formulated as

Py(x,2) = po(x|z)p(2)
[Me,4(x,2) = Ta(X)qe(2]x)
Qs(X,2) = Pdata(X)qs(2]X)

Dual-MCMC Teaching. In addition, we introduce two joint densi-
ties that incorporate the MCMC sampling as revision processes,

= T *po(x|z)p(z) Q¢,6’(X7 z)

Learning energy-based model. Therefore, learning the EBM 1s
based on the minimization of KL divergences as

KL(Qg, 0, (x,2) || Ma,g(x, 2))

Pp.a(x,2) = Pdata(X) Ty qe(2|X)
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Learning generator model. The generator model i1s learned
through the minimization of KL divergences as

KL(Qg, 0. (%, 2)|| Po(x, 2)) + KL(Py, o, (. 2) || Py (x, 2))

Learning inference model. The generator model 1s learned through
the minimization of KL divergences as

KL(Qg,.0,(x,2)[|Qp(x,2)) + KL(Pp, ., (%, 2) [T, (x, 2))

Illustration for Dual-MCMC Teaching.

Experiment: Image Modelling
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Experiment: MCMC Revision

Visualize of Langevin Transition on x.
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MOCMC revision on x. The leftmost 1images are sampled from the
generator model, and the rightmost 1mages are at the final step ot
the EBM-guided MCMC sampling. Bottom: Energy profile over
steps. Only minor changes can be observed during the transition,
suggesting that the generator has matched the EBM-guided MCMC
revision.

Experiment: Inference and Generator Model

Image Reconstruction.

Methods CIFAR-10 CelebA-64
VAE 0.0341 0.0438
ABP 0.0183 0.0277
Cooperative EBM 0.0271 0.0387
Divergence Triangle 0.0237 0.0281
Ours (Inf) 0.0214 0.0227
Ours (Inf+L=10) 0.0072 0.0164

Interpolation on Latent Space.
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The top and bottom three rows indicate 1mage generation and recon-
struction, respectively.



