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Preliminary I: Energy-based Model
Energy-based Model (EBM). The EBM can be defined with prob-
ability density as

πα(x) =
1

Z(α)
exp [fα(x)]

Maximum Likelihood Estimation (MLE). With observed exam-
ples {x(i), i = 1, 2, ..., n}, learning of EBM can be done via MLE
with the gradient computed as

∂

∂α
Lπ(α) = Epdata(x)[

∂

∂α
fα(x)]− Eπα(x)[

∂

∂α
fα(x)]

Limitation. The MLE learning requires sampling from the EBM,
which can be achieved by Markov Chain Monte Carlo (MCMC)
sampling, such as the Langevin dynamics,

xτ+1 = xτ + s
∂

∂xτ
log πα(xτ ) +

√
2sUτ

However, such Langevin dynamics typically start from noise points,
which may take a long time to converge and mix between different
modes.

Preliminary II: Generator Model
Generator Model. The generator model seeks to explain the obser-
vation signal x by a latent vector z and can be specified as

pθ(x, z) = p(z)pθ(x|z)

where p(z) is the known prior distribution such as unit Gaussian,
and pθ(x|z) is the generation model.
Maximum Likelihood Estimation (MLE). The MLE learning of
the generator model computes log-likelihood over the observed ex-
amples. The gradient is computed as

∂

∂θ
Lp(θ) = Epdata(x)pθ(z|x)[

∂

∂θ
log pθ(x, z)]

Limitation. The MLE learning requires sampling from the genera-
tor posterior, which can be done by MCMC sampling as,

zτ+1 = zτ + s
∂

∂zτ
log pθ(zτ |x) +

√
2sUτ

However, noise-initialized Langevin dynamics can be ineffective in
traversing the latent space and hard to mix.

Proposed Method
Inference Model. The generator model can be utilized as the ini-
tializer model for the MCMC sampling of EBM, while for the
MCMC sampling of the generator posterior, an inference model is
thus introduced,

qϕ(z|x) = N (µϕ(x), Vϕ(x))

which aims to initialize the MCMC generator posterior sampling.
Joint Density. With the EBM, generator and inference model, joint
densities can be formulated as

Pθ(x, z) = pθ(x|z)p(z)
Πα,ϕ(x, z) = πα(x)qϕ(z|x)
Qϕ(x, z) = pdata(x)qϕ(z|x)

Dual-MCMC Teaching. In addition, we introduce two joint densi-
ties that incorporate the MCMC sampling as revision processes,

P̃θ,α(x, z) = T x
α pθ(x|z)p(z) Q̃ϕ,θ(x, z) = pdata(x)T z

θ qϕ(z|x)

Learning energy-based model. Therefore, learning the EBM is
based on the minimization of KL divergences as

KL(Q̃ϕt,θt(x, z)∥Πα,ϕ(x, z))−KL(P̃θt,αt(x, z)∥Πα,ϕ(x, z))

Learning generator model. The generator model is learned
through the minimization of KL divergences as

KL(Q̃ϕt,θt(x, z)∥Pθ(x, z)) + KL(P̃θt,αt(x, z)∥Pθ(x, z))

Learning inference model. The generator model is learned through
the minimization of KL divergences as

KL(Q̃ϕt,θt(x, z)∥Qϕ(x, z)) + KL(P̃θt,αt
(x, z)∥Πα,ϕ(x, z))

Illustration for Dual-MCMC Teaching.

Experiment: Image Modelling

Methods CIFAR-10 CelebA-64
IS (↑) FID (↓) FID (↓)

Ours 8.55 9.26 5.15
Cooperative EBM 6.55 33.61 16.65
Amortized EBM 6.65 - -
Divergence Triangle 7.23 30.10 18.21
No MCMC EBM - 27.5 -

Short-run EBM 6.21 - 23.02
IGEBM 6.78 38.2 -
ImprovedCD EBM 7.85 25.1 -
Diffusion EBM 8.30 9.58 5.98
VAEBM 8.43 12.19 5.31

Methods CelebA-HQ-256 LSUN-Church-64

Ours 15.89 4.56

Diffusion EBM - 7.02
VAEBM 20.38 13.51
NCP-VAE 27.79 -

GLOW 68.93 59.35
PGGAN 21.7 6.1

Experiment: MCMC Revision
Visualize of Langevin Transition on x.

MCMC revision on x. The leftmost images are sampled from the
generator model, and the rightmost images are at the final step of
the EBM-guided MCMC sampling. Bottom: Energy profile over
steps. Only minor changes can be observed during the transition,
suggesting that the generator has matched the EBM-guided MCMC
revision.

Experiment: Inference and Generator Model
Image Reconstruction.

Methods CIFAR-10 CelebA-64

VAE 0.0341 0.0438
ABP 0.0183 0.0277

Cooperative EBM 0.0271 0.0387
Divergence Triangle 0.0237 0.0281
Ours (Inf) 0.0214 0.0227
Ours (Inf+L=10) 0.0072 0.0164

Interpolation on Latent Space.

The top and bottom three rows indicate image generation and recon-
struction, respectively.


