

Preliminary

Multi-layer Generator Model. Let $\mathbf{x} \in R^D$ be the high-dimensional observed example and $\mathbf{z} \in R^d$ be the low-dimensional latent variable. The multi-layer generator model can be specified as a joint distribution,

$$p_{\beta}(\mathbf{x}, \tilde{\mathbf{z}}) = p_{\beta_0}(\mathbf{x} | \tilde{\mathbf{z}}) p_{\beta_{>0}} p(\tilde{\mathbf{z}}) \quad \text{where}$$
$$p_{\beta_{>0}}(\tilde{\mathbf{z}}) = \prod_{i=1}^{L-1} p_{\beta_i}(\mathbf{z}_i | \mathbf{z}_{i+1}) p(\mathbf{z}_L)$$

where $\tilde{\mathbf{z}}$ collects $(\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_L)$, and $p_{\beta_{>0}}(\tilde{\mathbf{z}})$ is the prior model that factories consecutive layers of latent variables with conditional Gaussian distribution, i.e., $p_{\beta_i}(\mathbf{z}_i|\mathbf{z}_{i+1}) \sim \mathcal{N}(\mu_{\beta_i}(\mathbf{z}_{i+1}), \sigma_{\beta_i}^2(\mathbf{z}_{i+1}))$.

Limitation. The Gaussian prior typically only focuses on the *inter-layer* relation modelling while largely ignoring the *intra-layer* relation modelling, resulting in the *prior hole problem* with mismatch regions between the prior and aggregate posterior distribution.

Joint Energy-based Prior Model. The joint energy-based (EBM) prior model is shown to be expressive in capturing the intra-layer relation. With multi-layer of latent variables \tilde{z} ,

$$p_{\omega,\beta>0}(\tilde{\mathbf{z}}) = \frac{1}{Z_{\omega,\beta>0}} \exp\left[F_{\omega}(\tilde{\mathbf{z}})\right] p_{\beta>0}(\tilde{\mathbf{z}})$$

where $Z_{\omega,\beta>0}$ is the normalizing constant or partition function, $F_{\omega}(\tilde{\mathbf{z}}) = \sum_{i=1}^{L} f_{\omega_i}(\mathbf{z}_i)$ is the energy function parameterized with ω .

Limitation. Learning such multi-layer EBM prior can be viewed to minimize the Kullback-Leibler (KL) divergence between the generator posterior distribution and the EBM prior, i.e., $KL(p_{\theta}(\tilde{\mathbf{z}}|\mathbf{x})||p_{\omega,\beta>0}(\tilde{\mathbf{z}}))$, which is difficult due to the highly multi-modal generator posterior and the multiscale latent space, leading to ineffective MCMC sampling for EBM learning.

Diffusion on \tilde{z}-space. The diffusion probabilistic scheme assumes a sequence of perturbed samples $\mathbf{z}_{0:T} = (\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_T)$ for each diffusion step $t = 0, 1, \dots, T$. The noisy sample $\tilde{\mathbf{z}}_t$ is generated by pre-defined Gaussian perturbation kernel

$$q(\tilde{\mathbf{z}}_{t+1}|\tilde{\mathbf{z}}_t) \sim \mathcal{N}(\alpha_{t+1}\tilde{\mathbf{z}}_t, \sigma_{t+1}^2 \mathbf{I}_{|d|})$$

Limitation. It does not suit for multi-layer latent variables \tilde{z} , since it does not take into account the hierarchical structure between layers of latent variables. Their inter-layer relation is consequently *destroyed* during the progress, i.e., each z_i becomes independently distributed as standard Gaussian noise at the final diffusion step.

Learning Latent Space Hierarchical EBM Diffusion Models

Jiali Cui Tian Han Stevens Institute of Technology

Proposed Method

Diffusion on ũ-space. The conditional Gaussian distribution $p_{\beta_i}(\mathbf{z}_i|\mathbf{z}_{i+1}) \sim \mathcal{N}(\mu_{\beta_i}(\mathbf{z}_{i+1}), \sigma_{\beta_i}^2(\mathbf{z}_{i+1}))$ features the re-parametrization sampling, for which we can define an invertible deterministic transformation function to be $T_{\beta_{>0}}$, i.e., $\mathbf{\tilde{z}} = T_{\beta_{>0}}(\mathbf{\tilde{u}})$ and $\mathbf{\tilde{u}} = T_{\beta_{>0}}^{-1}(\mathbf{\tilde{z}})$. We can adapt our diffusion model on $\mathbf{\tilde{u}}$ -space.

$$q(\tilde{\mathbf{u}}_{t+1}|\tilde{\mathbf{u}}_t) \sim \mathcal{N}(\alpha_{t+1}\tilde{\mathbf{u}}_t, \sigma_{t+1}^2 \mathbf{I}_d)$$

Illustration on Diffusion Process.

Reverse on \tilde{u}-space. For marginal EBM prior on \tilde{u} -space, we have

$$p_{\omega,\beta>0}(\tilde{\mathbf{u}}) = \frac{1}{Z_{\omega,\beta>0}} \exp\left[F_{\omega}(T_{\beta>0}(\tilde{\mathbf{u}}))\right] p_0(\tilde{\mathbf{u}})$$

For our reverse model, we formulate the marginal EBM prior to a sequence of conditional EBM prior, i.e.,

$$p_{\omega,\beta>0}(\tilde{\mathbf{u}}_t|\tilde{\mathbf{u}}_{t+1}) \propto p_{\omega,\beta>0}(\tilde{\mathbf{u}}_t)p(\tilde{\mathbf{u}}_{t+1}|\tilde{\mathbf{u}}_t) = \frac{1}{Z_{\omega,\beta>0}(\tilde{\mathbf{u}}_{t+1})} \exp\left[F_{\omega}(T_{\beta>0}(\tilde{\mathbf{u}}_t),t)\right]p_0(\tilde{\mathbf{u}}_t) \cdot p(\tilde{\mathbf{u}}_{t+1}|\tilde{\mathbf{u}}_t)$$

where we abuse the notation and use $p(\tilde{\mathbf{u}}_{t+1}|\tilde{\mathbf{u}}_t)$ for forward kernel. **Illustration on Reverse Process.**

Experiment: Image Synthesis

Quantiative (FID score) Comparison with Direct Baselines.

$FID(\downarrow)$	CIFAR-10	CelebA-HQ-256	LSUN-Church-64
NVAE*	37.73	30.25	38.13
NVAE*-Recon	0.68	1.64	2.45
Ours $(T = 3)$	8.93	8.78	7.34
Joint-EBM	11.34	9.89	8.38
DRL EBM ($T = 6$)	9.58	_	8.38
NCP-VAE	24.08	24.79	_

Qualititative Results.

Experiment: Controllable Synthesis

Fine-tuned (hierarchical) controllable image synthesis with multiple attributes on CelebA-64.

Experiment: Hierarchical Representation

Hierarchical Sampling.

Visualization of representations learned by latent variables from the top to bottom layers, arranged as top-left, top-right, bottom-left and bottom-right. **Hierarchical Out-of-distribution Detection.**

The AUROC results for using energy scores of different layers (denoted as L > k for using top layers above k-th layer) as the decision function.