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Preliminary
Multi-layer Generator Model. Let x ∈ RD be the high-dimensional ob-
served example and z ∈ Rd be the low-dimensional latent variable. The
multi-layer generator model can be specified as a joint distribution,

pβ(x, z̃) =pβ0(x|z̃)pβ>0p(z̃) where

pβ>0
(z̃) =

L−1∏
i=1

pβi
(zi|zi+1)p(zL)

where z̃ collects (z1, z2, . . . , zL), and pβ>0
(z̃) is the prior model that facto-

ries consecutive layers of latent variables with conditional Gaussian distribu-
tion, i.e., pβi

(zi|zi+1) ∼ N (µβi
(zi+1), σ

2
βi
(zi+1)).

Limitation. The Gaussian prior typically only focuses on the inter-layer
relation modelling while largely ignoring the intra-layer relation modelling,
resulting in the prior hole problem with mismatch regions between the prior
and aggregate posterior distribution.

Joint Energy-based Prior Model. The joint energy-based (EBM) prior
model is shown to be expressive in capturing the intra-layer relation. With
multi-layer of latent variables z̃,

pω,β>0(z̃) =
1

Zω,β>0

exp [Fω(z̃)] pβ>0(z̃)

where Zω,β>0 is the normalizing constant or partition function, Fω(z̃) =∑L
i=1 fωi

(zi) is the energy function parameterized with ω.
Limitation. Learning such multi-layer EBM prior can be viewed to mini-
mize the Kullback-Leibler (KL) divergence between the generator posterior
distribution and the EBM prior, i.e., KL(pθ(z̃|x)||pω,β>0

(z̃)), which is
difficult due to the highly multi-modal generator posterior and the multi-
scale latent space, leading to ineffective MCMC sampling for EBM learning.

Diffusion on z̃-space. The diffusion probabilistic scheme assumes a se-
quence of perturbed samples z0:T = (z0, z1, . . . , zT ) for each diffusion step
t = 0, 1, . . . , T . The noisy sample z̃t is generated by pre-defined Gaussian
perturbation kernel

q(z̃t+1|z̃t) ∼ N (αt+1z̃t, σ
2
t+1I|d|)

Limitation. It does not suit for multi-layer latent variables z̃, since it
does not take into account the hierarchical structure between layers of la-
tent variables. Their inter-layer relation is consequently destroyed during the
progress, i.e., each zi becomes independently distributed as standard Gaus-
sian noise at the final diffusion step.

Proposed Method
Diffusion on ũ-space. The conditional Gaussian distribution pβi

(zi|zi+1) ∼
N (µβi

(zi+1), σ
2
βi
(zi+1)) features the re-parametrization sampling, for

which we can define an invertible deterministic transformation function to
be Tβ>0 , i.e., z̃ = Tβ>0(ũ) and ũ = T−1

β>0
(z̃). We can adapt our diffusion

model on ũ-space.

q(ũt+1|ũt) ∼ N (αt+1ũt, σ
2
t+1Id)

Illustration on Diffusion Process.

Reverse on ũ-space. For marginal EBM prior on ũ-space, we have

pω,β>0(ũ) =
1

Zω,β>0

exp [Fω(Tβ>0(ũ))] p0(ũ)

For our reverse model, we formulate the marginal EBM prior to a sequence
of conditional EBM prior, i.e.,

pω,β>0
(ũt|ũt+1) ∝ pω,β>0

(ũt)p(ũt+1|ũt) =

1

Zω,β>0(ũt+1)
exp [Fω(Tβ>0(ũt), t)] p0(ũt) · p(ũt+1|ũt)

where we abuse the notation and use p(ũt+1|ũt) for forward kernel.
Illustration on Reverse Process.

Experiment: Image Synthesis
Quantiative (FID score) Comparison with Direct Baselines.

FID(↓) CIFAR-10 CelebA-HQ-256 LSUN-Church-64

NVAE∗ 37.73 30.25 38.13
NVAE∗-Recon 0.68 1.64 2.45
Ours (T = 3) 8.93 8.78 7.34

Joint-EBM 11.34 9.89 8.38
DRL EBM (T = 6) 9.58 - 8.38
NCP-VAE 24.08 24.79 -

Qualititative Results.

Experiment: Hierarchical Representation
Hierarchical Sampling.

Visualization of representations learned by latent variables from the top to
bottom layers, arranged as top-left, top-right, bottom-left and bottom-right.
Hierarchical Out-of-distribution Detection.

The AUROC results for using energy scores of different layers (denoted as
L > k for using top layers above k-th layer) as the decision function.

Experiment: Controllable Synthesis

Fine-tuned (hierarchical) controllable image synthesis with multiple attributes on CelebA-64.


