Preliminary

Multi-layer Generator Model. Let x € R” be the high-dimensional ob-
served example and z € R? be the low-dimensional latent variable. The
multi-layer generator model can be specified as a joint distribution,

pg (x,2) —PBo (X\i)p5>op(i) where

L—1
PB-o(Z) = H P, (Zi|ziv1)p(zL)
1=1

where z collects (z1, z2,...,%r1), and pg_,(Z) is the prior model that facto-
ries consecutive layers of latent variables with conditional Gaussian distribu-
tion, i.e., pg, (2i|Zi+1) ~ N(ug, (zi+1), 05, (2i+1)).

Limitation. The Gaussian prior typically only focuses on the inter-layer
relation modelling while largely 1gnoring the intra-layer relation modelling,
resulting 1n the prior hole problem with mismatch regions between the prior
and aggregate posterior distribution.

Joint Energy-based Prior Model. The joint energy-based (EBM) prior
model 1s shown to be expressive 1n capturing the intra-layer relation. With
multi-layer of latent variables z,
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where Z, 5., is the normalizing constant or partition function, F,,(z) =

25—1 fw.(Z;) is the energy function parameterized with w.

Limitation. Learning such multi-layer EBM prior can be viewed to mini-
mize the Kullback-Leibler (KL) divergence between the generator posterior
distribution and the EBM prior, i.e., KL(pg(z|x)||pw. 8-,(Z)), which is
difficult due to the highly multi-modal generator posterior and the multi-
scale latent space, leading to ineftective MCMC sampling for EBM learning.

Diffusion on z-space. The diffusion probabilistic scheme assumes a se-
quence of perturbed samples zy.. = (zg, Z1, . . . , z7) for each diffusion step
t =0,1,...,T. The noisy sample z; 1s generated by pre-defined Gaussian
perturbation kernel

((Z4112¢) ~ N (4124, 07,1 11q))

Limitation. It does not suit for multi-layer latent variables z, since it
does not take into account the hierarchical structure between layers of la-
tent variables. Their inter-layer relation 1s consequently destroyed during the
progress, 1.e., each z; becomes independently distributed as standard Gaus-
s1an noise at the final diffusion step.
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Diffusion on u-space. The conditional Gaussian distribution pg, (z;|Z;+1) ~
N (g, (Zi11), 0%7; (z;41)) features the re-parametrization sampling, for
which we can define an invertible deterministic transtormation function to

: ~ ~ ~ 1 /~ : :
be T}s_,, e,z = Ts.,(u) and u = T3~ (z). We can adapt our diffusion
model on u-space.

q(0gy1]0g) ~ N (a1, 07:2+1Id)

Illustration on Diffusion Process.
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Reverse on u-space. For marginal EBM prior on u-space, we have
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For our reverse model, we formulate the marginal EBM prior to a sequence
of conditional EBM prior, 1.e.,

~

Pw,Bso (Ut |Uty1) X Puygo, (W) p(Ueg1]0y) =

1

Zw76>0 (ﬁt_l_]-

) &P Fu(Tp.o(0g), 1) po(Uy) - p(Qp41|y)

where we abuse the notation and use p(u;1|a;) for forward kernel.
Illustration on Reverse Process.
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Experiment: Image Synthesis Experiment: Hierarchical Representation

Quantiative (FID score) Comparison with Direct Baselines. Hierarchical Sampling.

FID(]) CIFAR-10 CelebA-HQ-256 LSUN-Church-64
NVAE* 37.73 30.25 38.13
NVAE*-Recon 0.68 1.64 2.45

Ours (1" = 3) 3.93 3.78 7.34
Joint-EBM 11.34 0.89 8.38

DRL EBM (1" = 6) 0.58 - 8.38
NCP-VAE 24.08 24.779 -

Visualization of representations learned by latent variables from the top to
bottom layers, arranged as top-left, top-right, bottom-left and bottom-right.
Hierarchical Out-of-distribution Detection.

Qualititative Results.

AUROC of out-of-distribution detection
0.90- diffusion
- |nference
0.85-
0.80-
0.75- —

0.70- /

0.65-

0.60-
0.55-

>0 >3 L>6 L>9 1>12 L>15 1>18 L>21 L>24 1>27

The AUROC results for using energy scores ot different layers (denoted as
L > k for using top layers above k-th layer) as the decision function.
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Fine-tuned (hierarchical) controllable image synthesis with multiple attributes on CelebA-64.



